
Beaker Documentation
Release 1.6.1

Ben Bangert, Mike Bayer

December 13, 2011

CONTENTS

i

ii

CHAPTER

ONE

CONFIGURATION

Beaker can be configured several different ways, depending on how it’s used. The most recommended
style is to use a dictionary of preferences that are to be passed to either the SessionMiddleware or the
CacheManager.

Since both Beaker’s sessions and caching use the same back-end container storage system, there’s some
options that are applicable to both of them in addition to session and cache specific configuration.

Most options can be specified as a string (necessary to config options that are setup in INI files), and will be
coerced to the appropriate value. Only datetime’s and timedelta’s cannot be coerced and must be the actual
objects.

Frameworks using Beaker usually allow both caching and sessions to be configured in the same spot, Beaker
assumes this condition as well and requires options for caching and sessions to be prefixed appropriately.

For example, to configure the cookie_expires option for Beaker sessions below, an appropriate entry in
a Pylons INI file would be:

Setting cookie_expires = true causes Beaker to omit the
expires= field from the Set-Cookie: header, signaling the cookie
should be discarded when the browser closes.
beaker.session.cookie_expires = true

Note: When using the options in a framework like Pylons or TurboGears2, these options must be prefixed
by beaker., for example in a Pylons INI file:

beaker.session.data_dir = %(here)s/data/sessions/data
beaker.session.lock_dir = %(here)s/data/sessions/lock

Or when using stand-alone with the SessionMiddleware:

from beaker.middleware import SessionMiddleware

session_opts = {
’ session.cookie_expires ’ : True

}

app = SomeWSGIAPP()
app = SessionMiddleware(app, session_opts)

Or when using the CacheManager:

from beaker.cache import CacheManager
from beaker.util import parse_cache_config_options

1

http://pylonshq.com/
http://pylonshq.com/
http://turbogears.org/2.0/
http://pylonshq.com/

Beaker Documentation, Release 1.6.1

cache_opts = {
’ cache.type ’ : ’ file ’ ,

’ cache.data_dir ’ : ’ /tmp/cache/data ’ ,

’ cache.lock_dir ’ : ’ /tmp/cache/lock ’
}

cache = CacheManager(**parse_cache_config_options(cache_opts))

Note: When using the CacheManager directly, all dict options must be run through the
beaker.util.parse_cache_config_options() function to ensure they’re valid and of the appro-
priate type.

1.1 Options For Sessions and Caching

data_dir (optional, string) Used with any back-end that stores its data in physical files, such as the dbm or
file-based back-ends. This path should be an absolute path to the directory that stores the files.

lock_dir (required, string) Used with every back-end, to coordinate locking. With caching, this lock file is
used to ensure that multiple processes/threads aren’t attempting to re-create the same value at the
same time (The Dog-Pile Effect)

memcache_module (optional, string) One of the names memcache, cmemcache, pylibmc, or auto.
Default is auto. Specifies which memcached client library should be imported when using the
ext:memcached backend. If left at its default of auto, pylibmc is favored first, then cmemcache,
then memcache. New in 1.5.5.

type (required, string) The name of the back-end to use for storing the sessions or cache objects.

Available back-ends supplied with Beaker: file, dbm, memory, ext:memcached, ext:database,
ext:google

For sessions, the additional type of cookie is available which will store all the session data in the
cookie itself. As such, size limitations apply (4096 bytes).

Some of these back-ends require the url option as listed below.

webtest_varname (optional, string) The name of the attribute to use when stashing the session object into
the environ for use with WebTest. The name provided here is where the session object will be attached
to the WebTest TestApp return value.

url (optional, string) URL is specific to use of either ext:memcached or ext:database. When using one of
those types, this option is required.

When used with ext:memcached, this should be either a single, or semi-colon separated list of mem-
cached servers:

session_opts = {
’ session.type ’ : ’ ext:memcached ’ ,

’ session.url ’ : ’ 127.0.0.1:11211 ’ ,
}

When used with ext:database, this should be a valid SQLAlchemy database string.

2 Chapter 1. Configuration

http://www.sqlalchemy.org/

Beaker Documentation, Release 1.6.1

1.2 Session Options

The Session handling takes a variety of additional options relevant to how it stores session id’s in cookies,
and when using the optional encryption.

auto (optional, bool) When set to True, the session will save itself anytime it is accessed during a request,
negating the need to issue the save() method.

Defaults to False.

cookie_expires (optional, bool, datetime, timedelta, int) Determines when the cookie used to track the
client-side of the session will expire. When set to a boolean value, it will either expire at the end
of the browsers session, or never expire.

Setting to a datetime forces a hard ending time for the session (generally used for setting a session to
a far off date).

Setting to an integer will result in the cookie being set to expire in that many seconds. I.e. a value of
300 will result in the cookie being set to expire in 300 seconds.

Defaults to never expiring.

cookie_domain (optional, string) What domain the cookie should be set to. When using sub-domains, this
should be set to the main domain the cookie should be valid for. For example, if a cookie should be
valid under www.nowhere.com and files.nowhere.com then it should be set to .nowhere.com.

Defaults to the current domain in its entirety.

Alternatively, the domain can be set dynamically on the session by calling, see Session Attributes / Keys.

key (required, string) Name of the cookie key used to save the session under.

secret (required, string) Used with the HMAC to ensure session integrity. This value should ideally be a
randomly generated string.

When using in a cluster environment, the secret must be the same on every machine.

secure (optional, bool) Whether or not the session cookie should be marked as secure. When marked as
secure, browsers are instructed to not send the cookie over anything other than an SSL connection.

timeout (optional, integer) Seconds until the session is considered invalid, after which it will be ignored
and invalidated. This number is based on the time since the session was last accessed, not from when
the session was created.

Defaults to never expiring.

1.2.1 Encryption Options

These options should then be used instead of the secret option listed above.

encrypt_key (required, string) Encryption key to use for the AES cipher. This should be a fairly long
randomly generated string.

validate_key (required, string) Validation key used to sign the AES encrypted data.

Note: You may need to install additional libraries to use Beaker’s cookie-based session encryption. See the
Encryption section for more information.

1.2. Session Options 3

Beaker Documentation, Release 1.6.1

1.3 Cache Options

For caching, options may be directly specified on a per-use basis with the cache() decorator, with the rest
of these options used as fallback should one of them not be specified in the call.

Only the lock_dir option is strictly required, unless using the file-based back-ends as noted with the
sessions.

expire (optional, integer) Seconds until the cache is considered old and a new value is created.

1.3.1 Cache Region Options

Starting in Beaker 1.3, cache regions are now supported. These can be thought of as bundles of configuration
options to apply, rather than specifying the type and expiration on a per-usage basis.

enabled (optional, bool) Quick toggle to disable or enable caching across an entire application.

This should generally be used when testing an application or in development when caching should
be ignored.

Defaults to True.

regions (optional, list, tuple) Names of the regions that are to be configured.

For each region, all of the other cache options are valid and will be read out of the cache options for
that key. Options that are not listed under a region will be used globally in the cache unless a region
specifies a different value.

For example, to specify two batches of options, one called long-term, and one called short-term:

cache_opts = {
’cache.data_dir’: ’/tmp/cache/data’,
’cache.lock_dir’: ’/tmp/cache/lock’
’cache.regions’: ’short_term, long_term’,
’cache.short_term.type’: ’ext:memcached’,
’cache.short_term.url’: ’127.0.0.1.11211’,
’cache.short_term.expire’: ’3600’,
’cache.long_term.type’: ’file’,
’cache.long_term.expire’: ’86400’,

4 Chapter 1. Configuration

CHAPTER

TWO

SESSIONS

2.1 About

Sessions provide a place to persist data in web applications, Beaker’s session system simplifies session
implementation details by providing WSGI middleware that handles them.

All cookies are signed with an HMAC signature to prevent tampering by the client.

2.1.1 Lazy-Loading

Only when a session object is actually accessed will the session be loaded from the file-system, preventing
performance hits on pages that don’t use the session.

2.2 Using

The session object provided by Beaker’s SessionMiddleware implements a dict-style interface with a few
additional object methods. Once the SessionMiddleware is in place, a session object will be made available
as beaker.session in the WSGI environ.

Getting data out of the session:

myvar = session[’ somekey ’]

Testing for a value:

logged_in = ’ user_id ’ in session

Adding data to the session:

session[’ name ’] = ’ Fred Smith ’

Complete example using a basic WSGI app with sessions:

from beaker.middleware import SessionMiddleware

def simple_app(environ, start_response):
Get the session object from the environ
session = environ[’ beaker.session ’]

Check to see if a value is in the session

5

Beaker Documentation, Release 1.6.1

if ’ logged_in ’ in session:
user = True

else:
user = False

Set some other session variable
session[’ user_id ’] = 10

start_response(’ 200 OK ’ , [(’ Content-type ’ , ’ text/plain ’)])

return [’ User is logged in: %s ’ % user]

Configure the SessionMiddleware
session_opts = {

’ session.type ’ : ’ file ’ ,

’ session.cookie_expires ’ : True,
}
wsgi_app = SessionMiddleware(simple_app, session_opts)

Note: This example does not actually save the session for the next request. Adding the save() call
explained below is required, or having the session set to auto-save.

2.2.1 Session Attributes / Keys

Sessions have several special attributes that can be used as needed by an application.

• id - Unique 40 char SHA-generated session ID

• last_accessed - The last time the session was accessed before the current access, will be None if the
session was just made

There’s several special session keys populated as well:

• _accessed_time - Current accessed time of the session, when it was loaded

• _creation_time - When the session was created

2.3 Saving

Sessions can be saved using the save() method on the session object:

session.save()

Warning: Beaker relies on Python’s pickle module to pickle data objects for storage in the session.
Objects that cannot be pickled should not be stored in the session.

This flags a session to be saved, and it will be stored on the chosen back-end at the end of the request.

If it’s necessary to immediately save the session to the back-end, the persist() method should be used:

session.persist()

This is not usually the case however, as a session generally should not be saved should something catas-
trophic happen during a request.

6 Chapter 2. Sessions

Beaker Documentation, Release 1.6.1

Order Matters: When using the Beaker middleware, you must call save before the headers are sent to the
client. Since Beaker’s middleware watches for when the start_response function is called to know that
it should add its cookie header, the session must be saved before its called.

Keep in mind that Response objects in popular frameworks (WebOb, Werkzeug, etc.) call start_response
immediately, so if you are using one of those objects to handle your Response, you must call .save() before
the Response object is called:

this would apply to WebOb and possibly others too
from werkzeug.wrappers import Response

this will work
def sessions_work(environ, start_response):

environ[’ beaker.session ’][’ count ’] += 1

resp = Response(’ hello ’)

environ[’ beaker.session ’].save()
return resp(environ, start_response)

this will not work
def sessions_broken(environ, start_response):

environ[’ beaker.session ’][’ count ’] += 1

resp = Response(’ hello ’)
retval = resp(environ, start_response)
environ[’ beaker.session ’].save()
return retval

2.3.1 Auto-save

Saves can be done automatically by setting the auto configuration option for sessions. When set, calling
the save() method is no longer required, and the session will be saved automatically anytime its accessed
during a request.

2.4 Deleting

Calling the delete() method deletes the session from the back-end storage and sends an expiration on
the cookie requesting the browser to clear it:

session.delete()

This should be used at the end of a request when the session should be deleted and will not be used further
in the request.

If a session should be invalidated, and a new session created and used during the request, the
invalidate() method should be used:

session.invalidate()

2.4.1 Removing Expired/Old Sessions

Beaker does not automatically delete expired or old cookies on any of its back-ends. This task is left up to
the developer based on how sessions are being used, and on what back-end.

The database backend records the last accessed time as a column in the database so a script could be run to
delete session rows in the database that haven’t been used in a long time.

2.4. Deleting 7

Beaker Documentation, Release 1.6.1

When using the file-based sessions, a script could run to remove files that haven’t been touched in a long
time, for example (in the session’s data dir):

find . -mtime +3 -exec rm {} \;

2.5 Cookie Domain and Path

In addition to setting a default cookie domain with the cookie domain setting, the cookie’s domain and path
can be set dynamically for a session with the domain and path properties.

These settings will persist as long as the cookie exists, or until changed.

Example:

Setting the session’s cookie domain and path
session.domain = ’ .domain.com ’

session.path = ’ /admin ’

2.6 Cookie-Based

Session can be stored purely on the client-side using cookie-based sessions. This option can be turned on
by setting the session type to cookie.

Using cookie-based session carries the limitation of how large a cookie can be (generally 4096 bytes). An
exception will be thrown should a session get too large to fit in a cookie, so using cookie-based session
should be done carefully and only small bits of data should be stored in them (the users login name, admin
status, etc.).

Large cookies can slow down page-loads as they increase latency to every page request since the cookie is
sent for every request under that domain. Static content such as images and Javascript should be served off
a domain that the cookie is not valid for to prevent this.

Cookie-based sessions scale easily in a clustered environment as there’s no need for a shared storage system
when different servers handle the same session.

2.6.1 Encryption

In the event that the cookie-based sessions should also be encrypted to prevent the user from being able to
decode the data (in addition to not being able to tamper with it), Beaker can use 256-bit AES encryption to
secure the contents of the cookie.

Depending on the Python implementation used, Beaker may require an additional library to provide AES
encryption.

On CPython (the regular Python), the pycryptopp library or PyCrypto library is required.

On Jython, no additional packages are required, but at least on the Sun JRE, the size of the encryption key is
by default limited to 128 bits, which causes generated sessions to be incompatible with those generated in
CPython, and vice versa. To overcome this limitation, you need to install the unlimited strength juristiction
policy files from Sun:

• Policy files for Java 5

• Policy files for Java 6

8 Chapter 2. Sessions

http://pypi.python.org/pypi/pycryptopp
http://pypi.python.org/pypi/pycrypto/2.0.1
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=jce_policy-1.5.0-oth-JPR@CDS-CDS_Developer
https://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=jce_policy-6-oth-JPR@CDS-CDS_Developer

CHAPTER

THREE

CACHING

3.1 About

Beaker’s caching system was originally based off the Perl Cache::Cache module, which was ported for use
in Myghty. Beaker was then extracted from this code, and has been substantially rewritten and modernized.

Several concepts still exist from this origin though. Beaker’s caching (and its sessions, though its behind
the scenes) utilize the concept of NamespaceManager, and Container objects to handle storing cached data.

Each back-end utilizes a customized version of each of these objects to handle storing data appropriately
depending on the type of the back-end.

The CacheManager is responsible for getting the appropriate NamespaceManager, which then stores the
cached values. Each namespace corresponds to a single thing that should be cached. Usually a single
thing to be cached might vary slightly depending on parameters, for example a template might need
several different copies of itself stored depending on whether a user is logged in or not. Each one of these
copies is then keyed under the NamespaceManager and stored in a Container.

There are three schemes for using Beaker’s caching, the first and more traditional style is the programmatic
API. This exposes the namespace’s and retrieves a Cache object that handles storing keyed values in a
NamespaceManager with Container objects.

The more elegant system, introduced in Beaker 1.3, is to use the cache decorators, these also support the use
of Cache Regions.

Introduced in Beaker 1.5 is a more flexible cache_region() decorator capable of decorating functions for
use with Beaker’s Cache Regions before Beaker has been configured. This makes it possible to easily use
Beaker’s region caching decorator on functions in the module level.

3.2 Creating the CacheManager Instance

Before using Beaker’s caching, an instance of the CacheManager class should be created. All of the exam-
ples below assume that it has already been created.

Creating the cache instance:

from beaker.cache import CacheManager
from beaker.util import parse_cache_config_options

cache_opts = {
’ cache.type ’ : ’ file ’ ,

’ cache.data_dir ’ : ’ /tmp/cache/data ’ ,

9

http://www.myghty.org/

Beaker Documentation, Release 1.6.1

’ cache.lock_dir ’ : ’ /tmp/cache/lock ’
}

cache = CacheManager(**parse_cache_config_options(cache_opts))

Additional configuration options are documented in the Configuration section of the Beaker docs.

3.3 Programmatic API

To store data for a cache value, first, a NamespaceManager has to be retrieved to manage the keys for a
thing to be cached:

Assuming that cache is an already created CacheManager instance
tmpl_cache = cache.get_cache(’ mytemplate.html ’ , type= ’ dbm ’ , expire=3600)

Individual values should be stored using a creation function, which will be called anytime the cache has
expired or a new copy needs to be made. The creation function must not accept any arguments as it won’t
be called with any. Options affecting the created value can be passed in by using closure scope on the
creation function:

search_param = ’ gophers ’

def get_results():
do something to retrieve data
data = get_data(search_param)
return data

Cache this function, based on the search_param, using the tmpl_cache
instance from the prior example
results = tmpl_cache.get(key=search_param, createfunc=get_results)

3.3.1 Invalidating

All of the values for a particular namespace can be removed by calling the clear() method:

tmpl_cache.clear()

Note that this only clears the key’s in the namespace that this particular Cache instance is aware of. There-
fore its recommend to manually clear out specific keys in a cache namespace that should be removed:

tmpl_cache.remove_value(key=search_param)

3.4 Decorator API

When using the decorator API, a namespace does not need to be specified and will instead be created for
you with the name of the module + the name of the function that will have its output cached.

Since its possible that multiple functions in the same module might have the same name, additional argu-
ments can be provided to the decorators that will be used in the namespace to prevent multiple functions
from caching their values in the same location.

For example:

10 Chapter 3. Caching

Beaker Documentation, Release 1.6.1

Assuming that cache is an already created CacheManager instance
@cache.cache(’ my_search_func ’ , expire=3600)
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

results = get_results(’ gophers ’)

The non-keyword arguments to the cache() method are the additional ones used to ensure this function’s
cache results won’t clash with another function in this module called get_results.

The cache expire argument is specified as a keyword argument. Other valid arguments to the
get_cache() method such as type can also be passed in.

When using the decorator, the function to cache can have arguments, which will be used as the key was in
the Programmatic API for the data generated.

Warning: These arguments can not be keyword arguments.

3.4.1 Invalidating

Since the cache() decorator hides the namespace used, manually removing the key requires the use of the
invalidate() function. To invalidate the ‘gophers’ result that the prior example referred to:

cache.invalidate(get_results, ’ my_search_func ’ , ’ gophers ’)

If however, a type was specified for the cached function, the type must also be given to the invalidate()
function so that it can remove the value from the appropriate back-end.

Example:

Assuming that cache is an already created CacheManager instance
@cache.cache(’ my_search_func ’ , type= " file " , expire=3600)
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

cache.invalidate(get_results, ’ my_search_func ’ , ’ gophers ’ , type= " file ")

Note: Both the arguments used to specify the additional namespace info to the cache decorator and the
arguments sent to the function need to be given to the region_invalidate() function so that it can
properly locate the namespace and cache key to remove.

3.5 Cache Regions

Rather than having to specify the expiration, or toggle the type used for caching different functions, com-
monly used cache parameters can be defined as Cache Regions. These user-defined regions than may be
used with the region() decorator rather than passing the configuration.

3.5. Cache Regions 11

Beaker Documentation, Release 1.6.1

This can be useful if there are a few common cache schemes used by an application that should be setup in
a single place then used as appropriate throughout the application.

Setting up cache region’s is documented in the cache region options section in Configuration.

Assuming a long_term and short_term region were setup, the region() decorator can be used:

@cache.region(’ short_term ’ , ’ my_search_func ’)
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

results = get_results(’ gophers ’)

Or using the cache_region() decorator:

@cache_region(’ short_term ’ , ’ my_search_func ’)
def get_results(search_param):

do something to retrieve data
data = get_data(search_param)
return data

results = get_results(’ gophers ’)

The only difference with the cache_region() decorator is that the cache does not need to be configured
when its used. This allows one to decorate functions in a module before the Beaker cache is configured.

3.5.1 Invalidating

Since the region() decorator hides the namespace used, manually removing the key requires the use of
the region_invalidate() function. To invalidate the ‘gophers’ result that the prior example referred to:

cache.region_invalidate(get_results, None, ’ my_search_func ’ , ’ gophers ’)

Or when using the cache_region() decorator, the beaker.cache.region_invalidate() function
should be used:

region_invalidate(get_results, None, ’ my_search_func ’ , ’ gophers ’)

Note: Both the arguments used to specify the additional namespace info to the cache decorator and the
arguments sent to the function need to be given to the region_invalidate() function so that it can
properly locate the namespace and cache key to remove.

12 Chapter 3. Caching

CHAPTER

FOUR

CHANGES IN BEAKER

4.1 Release 1.6.1 (10/20/2011)

• Remove stray print statement.

• Include .app for consistency instead of requiring wrap_app.

4.2 Release 1.6 (10/16/2011)

• Fix bug with cache_key length calculation.

• Fix bug with how path was set so that its restored properly and propagated.

• Fix bug with CacheMiddleware clobbering enabled setting.

• Update option for cookie_expires so that it can now handle an integer which will be used as the
seconds till the cookie expires.

• Merge fix for Issue 31, can now handle unicode cache keys.

• Add key_length option for cache regions, and for keyword args passed into the cache system.
Cache keys longer than this will be SHA’d.

• added runtime beaker.__version__

• Add webtest_varname option to configuration to optionally include the session value in the envi-
ron vars when using Beaker with WebTest.

• Defer running of pkg_resources to look for external cache modules until requested. #66

• memcached backend uses pylibmc.ThreadMappedPool to ensure thread-local usage of pylibmc when
that library is in use. (#60)

• memcached backend also has memcache_module string argument, allows direct specification of the
name of which memcache backend to use.

• Basic container/file-based Session support working in Py3K. (#72)

• Further Python 3 fixes

• Added an optimization to the FileNamespaceContainer when used with Session, such that the pickled
contents of the file are not read a second time when session.save() is called. (#64)

• Fixed bug whereby CacheManager.invalidate wouldn’t work for a function decorated by
cache.cache(). (#61)

13

Beaker Documentation, Release 1.6.1

• cache decorators @cache.cache(), @cache_region() won’t include first argument named ‘self’ or ‘cls’ as
part of the cache key. This allows reasonably safe usage for methods as well as functions. (#55)

• file backend no longer squashes unpickling errors. This was inconsistent behavior versus all the other
backends.

• invalidate_corrupt flag on Session now emits a warning. (#52)

• cache.remove_value() removes the value even if it’s already marked ‘expired’ (#42)

4.3 Release 1.5.4 (6/16/2010)

• Fix import error with InvalidCryptoBackendError.

• Fix for domain querying on property.

• Test cleanups

• Fix bug with warnings preventing proper running under Jython.

4.4 Release 1.5.3 (3/2/2010)

• Fix Python 2.4 incompatibility with google import.

4.5 Release 1.5.2 (3/1/2010)

• pkg_resources scanning for additional Beaker back-ends gracefully handles situations where its not
present (GAE). Fixes #36.

• Avoid timing attacks on hash comparison.

• Provide abstract base for MemoryNamespaceManager that deals with “dictionaries”.

• Added tests for invalidating cache, and fixed bug with function cache when no args are present.

• The SQLAlchemy backends require SQLAlchemy 0.4 or greater (0.6 recommended).

• Rudimental Python 3 support is now available. Simply use Python 3 with Distribute and “python
setup.py install” to run 2to3 automatically, or manually run 2to3 on “beaker” and “tests” to convert
to a Python 3 version.

• Added support for PyCrypto module to encrypted session, etc. in addition to the existing pycryptopp
support.

4.6 Release 1.5.1 (12/17/2009)

• Fix cache namespacing.

14 Chapter 4. Changes in Beaker

Beaker Documentation, Release 1.6.1

4.7 Release 1.5 (11/23/2009)

• Update memcached to default to using pylibmc when available.

• Fix bug when cache value doesn’t exist causing has_key to throw an exception rather than return
False. Fixes #24.

• Fix bug where getpid under GAE is used improperly to assume it should be a non-string. Fixes #22.

• Add cache_region decorator that works before configuration of the cache regions have been completed
for use in module-level decorations.

• Fix bug where has_value sees the value before its removed.

• Improved accuracy of “dogpile” checker by removing dependency on “self” attributes, which seem
to be slightly unreliable in highly concurrent scenarios.

4.8 Release 1.4.2 (9/25/2009)

• Fix bug where memcached may yank a value after the has_value but before the value can be fetched.

• Fix properties for setting the path. Fixes #15.

• Fix the ‘TypeError: argument must be an int, or have a fileno() method’ erorr sporadically emitted by
FileSynchronizer under moderate load.

4.9 Release 1.4.1 (9/10/2009)

• Fix verification of options to throw an error if a beaker param is an empty string.

• Add CacheManager.invalidate function to easily invalidate cache spaces created by the use of the
cache decorator.

• Add CacheManager.region_invalidate function to easily invalidate cache spaces created by the use of
the cache_region decorator.

• Fix the InvalidCryptoBackendError exception triggering a TypeError. Patch from dz, fixes #13.

4.10 Release 1.4 (7/24/2009)

• Fix bug with hmac on Python 2.4. Patch from toshio, closes ticket #2133 from the TurboGears2 Trac.

• Fix bug with occasional ValueError from FileNamespaceManager.do_open. Fixes #10.

• Fixed bug with session files being saved despite being new and not saved.

• Fixed bug with CacheMiddleware overwriting configuration with default arguments despite prior
setting.

• Fixed bug with SyntaxError not being caught properly in entry point discovery.

• Changed to using BlobProperty for Google Datastore.

• Added domain/path properties to the session. This allows one to dynamically set the cookie’s domain
and/or path on the fly, which will then be set on the cookie for the session.

4.7. Release 1.5 (11/23/2009) 15

Beaker Documentation, Release 1.6.1

• Added support for cookie-based sessions in Jython via the JCE (Java Cryptography Extensions). Patch
from Alex Grönholm.

• Update Beaker database extensions to work with SQLAlchemy 0.6 PostgreSQL, and Jython.

4.11 Release 1.3.1 (5/5/2009)

• Added a whole bunch of Sphinx documentation for the updated site.

• Added corresponding remove as an alias to the caches remove_value.

• Fixed cookie session not having an invalidate function.

• Fix bug with CacheMiddleware not using proper function to load configuration options, missing the
cache regions.

4.12 Release 1.3 (4/6/2009)

• Added last_accessed attribute to session to indicate the previous time the session was last accessed.

• Added setuptools entry points to dynamically discover additional namespace backends.

• Fixed bug with invalidate and locks, fixes #594.

• Added cache.cache decorator for arbitrary caching.

• Added cache.region decorator to the CacheManager object.

• Added cache regions. Can be provided in a configuration INI type, or by adding in a cache_regions
arg to the CacheManager.

• Fix bug with timeout not being saved properly.

• Fix bug with cookie-only sessions sending cookies for new sessions even if they weren’t supposed to
be saved.

• Fix bug that caused a non-auto accessed session to not record the time it was previously accessed
resulting in session timeouts.

• Add function to parse configuration dicts as appropriate for use with the CacheManager.

• The “expiretime” is no longer passed to the memcached backend - since if memcached makes the
expired item unavailable at the same time the container expires it, then all actors must block until the
new value is available (i.e. breaks the anti-dogpile logic).

4.13 Release 1.2.3 (3/2/2009)

• Fix accessed increment to take place after the accessed time is checked to see if it has expired. Fixes
#580.

• data_dir/lock_dir parameters are optional to most backends; if not present, mutex-based locking will
be used for creation functions

• Adjustments to Container to better account for backends which don’t provide read/write locks, such
as memcached. As a result, the plain “memory” cache no longer requires read/write mutexing.

16 Chapter 4. Changes in Beaker

Beaker Documentation, Release 1.6.1

4.14 Release 1.2.2 (2/14/2009)

• Fix delete bug reported by andres with session not being deleted.

4.15 Release 1.2.1 (2/09/2009)

• Fix memcached behavior as memcached returns None on nonexistent key fetch which broke invalid
session checking.

4.16 Release 1.2 (1/22/2009)

• Updated session to only save to the storage once no under any/all conditions rather than every time
save() is called.

• Added session.revert() function that reverts the session to the state at the beginning of the request.

• Updated session to store entire session data in a single namespace key, this lets memcached work
properly, and makes for more efficient use of the storage system for sessions.

4.17 Release 1.1.3 (12/29/2008)

• Fix the 1.1.2 old cache/session upgrader to handle the has_current_value method.

• Make InvalidCacheBackendError an ImportError.

4.18 Release 1.1.2 (11/24/2008)

• Upgrade Beaker pre-1.1 cache/session values to the new format rather than throwing an exception.

4.19 Release 1.1.1 (11/24/2008)

• Fixed bug in Google extension which passed arguments it should no longer pass to NamespaceMan-
ager.

• Fixed bug involving lockfiles left open during cache “value creation” step.

4.20 Release 1.1 (11/16/2008)

• file-based cache will not hold onto cached value once read from file; will create new value if the file is
deleted as opposed to re-using what was last read. This allows external removal of files to be used as
a cache-invalidation mechanism.

• file-based locking will not unlink lockfiles; this can interfere with the flock() mechanism in the event
that a concurrent process is accessing the files.

4.14. Release 1.2.2 (2/14/2009) 17

Beaker Documentation, Release 1.6.1

• Sending “type” and other namespace config arguments to cache.get()/
cache.put()/cache.remove_value() is deprecated. The namespace configuration is now preferred at
the Cache level, i.e. when you construct a Cache or call cache_manager.get_cache(). This removes the
ambiguity of Cache’s dictionary interface and has_key() methods, which have no awareness of those
arguments.

• the “expiretime” in use is stored in the cache itself, so that it is always available when calling has_key()
and other methods. Between this change and the deprecation of ‘type’, the Cache no longer has any
need to store cache configuration in memory per cache key, which in a dynamically-generated key
scenario stores an arbitrarily large number of configurations - essentially a memory leak.

• memcache caching has been vastly improved, no longer stores a list of all keys, which along the same
theme prevented efficient usage for an arbitrarily large number of keys. The keys() method is now
unimplemented, and cache.remove() clears the entire memcache cache across all namespaces. This is
what the memcache API provides so it’s the best we can do.

• memcache caching passes along “expiretime” to the memcached “time” parameter, so that the cache
itself can reduce its size for elements which are expired (memcache seems to manage its size in any
case, this is just a hint to improve its operation).

• replaced homegrown ThreadLocal implementation with threading.local, falls back to a 2.3 compat
one for python<2.4

4.21 Release 1.0.3 (10/14/2008)

• Fixed os.getpid issue on GAE.

• CookieSession will add ‘_expires’ value to data when an expire time is set, and uses it

4.22 Release 1.0.2 (9/22/2008)

• Fixed bug caused when attempting to invalidate a session that hadn’t previously been created.

4.23 Release 1.0.1 (8/19/2008)

• Bug fix for cookie sessions to retain id before clearing values.

4.24 Release 1.0 (8/13/2008)

• Added cookie delete to both cookie only sessions and normal sessions, to help with proxies and such
that may determine whether a user is logged in via a cookie. (cookie varies, etc.). Suggested by Felix
Schwarz.

• cache.get_value() now uses the given **kwargs in all cases in the same manner as cache.set_value().
This way you can send a new createfunc to cache.get_value() each time and it will be used.

18 Chapter 4. Changes in Beaker

Beaker Documentation, Release 1.6.1

4.25 Release 0.9.5 (6/19/2008)

• Fixed bug in memcached to be tolerant of keys disappearing when memcached expires them.

• Fixed the cache functionality to actually work, previously set_value was ignored if there was already
a value set.

4.26 Release 0.9.4 (4/13/2008)

• Adding ‘google’ backend datastore, available by specifying ‘google’ as the cache/session type. Note
that this takes an optional table_name used to name the model class used.

• SECURITY BUG: Fixed security issue with Beaker not properly removing directory escaping charac-
ters from the session ID when un-signed sessions are used. Reported with patch by Felix Schwarz.

• Fixed bug with Beaker not playing well with Registry when its placed above it in the stack. Thanks
Wichert Akkerman.

4.27 Release 0.9.3 (2/28/2008)

• Adding ‘id’ to cookie-based sessions for better compatibility.

• Fixed error with exception still raised for PyCrypto missing.

• WARNING: Session middleware no longer catches Paste HTTP Exceptions, apps are now expected to
capture and handle Paste HTTP Exceptions themselves.

• Fixed Python 2.4 compatibility bug in hmac.

• Fixed key lookup bug on cache object to only use the settings for the key lookup. Found by Andrew
Stromnov.

4.28 Release 0.9.2 (2/13/2008)

• Added option to make Beaker use a secure cookie.

• Removed CTRCipher as pycryptopp doesn’t need it.

• Changed AES to use 256 bit.

• Fixed signing code to use hmac with sha for better signing security.

• Fixed memcached code to use delete_multi on clearing the keys for efficiency and updated key re-
trieval to properly store and retrieve None values.

• Removing cookie.py and signed cookie middleware, as the environ_key option for session middle-
ware provides a close enough setting.

• Added option to use just cookie-based sessions without requiring encryption.

• Switched encryption requirement from PyCrypto to pycryptopp which uses a proper AES in Counter
Mode.

4.25. Release 0.9.5 (6/19/2008) 19

Beaker Documentation, Release 1.6.1

4.29 Release 0.9.1 (2/4/2008)

• Fixed bug in middleware using module that wasn’t imported.

4.30 Release 0.9 (12/17/07)

• Fixed bug in memcached replace to actually replace spaces properly.

• Fixed md5 cookie signature to use SHA-1 when available.

• Updated cookie-based session storage to use 256-bit AES-CTR mode with a SHA-1 HMAC signature.
Now requires PyCrypto to use for AES scheme.

• WARNING: Moved session and cache middleware to middleware, as per the old deprecation warn-
ings had said was going to happen for 0.8.

• Added cookie-only session storage with RC4 ciphered encryption, requires Python 2.4.

• Add the ability to specify the cookie’s domain for sessions.

4.31 Release 0.8.1 (11/15/07)

• Fixed bug in database.py not properly handling missing sqlalchemy library.

4.32 Release 0.8 (10/17/07)

• Fixed bug in prior db update causing session to occasionally not be written back to the db.

• Fixed memcached key error with keys containing spaces. Thanks Jim Musil.

• WARNING: Major change to ext:database to use a single row per namespace. Additionally, there’s an
accessed and created column present to support easier deletion of old cache/session data. You will
need to drop any existing tables being used by the ext:database backend.

• Streamline ext:database backend to avoid unnecessary database selects for repeat data.

• Added SQLAlchemy 0.4 support to ext:database backend.

4.33 Release 0.7.5 (08/18/07)

• Fixed data_dir parsing for session string coercions, no longer picks up None as a data_dir.

• Fixed session.get_by_id to lookup recently saved sessions properly, also updates session with cre-
ation/access time upon save.

• Add unit tests for get_by_id function. Updated get_by_id to not result in additional session files.

• Added session.get_by_id function to retrieve a session of the given id.

20 Chapter 4. Changes in Beaker

Beaker Documentation, Release 1.6.1

4.34 Release 0.7.4 (07/09/07)

• Fixed issue with Beaker not properly handling arguments as Pylons may pass them in.

• Fixed unit test to catch file removal exception.

• Fixed another bug in synchronization, this one involving reentrant conditions with file synchroniza-
tion

• If a file open fails due to pickling errors, locks just opened are released unconditionally

4.35 Release 0.7.3 (06/08/07)

• Beaker was not properly parsing input options to session middleware. Thanks to Yannick Gingras
and Timothy S for spotting the issue.

• Changed session to only send the cookie header if its a new session and save() was called. Also only
creates the session file under these conditions.

4.36 Release 0.7.2 (05/19/07)

• Added deprecation warning for middleware move, relocated middleware to cache and session mod-
ules for backwards compatibility.

4.37 Release 0.7.1 05/18/07)

• adjusted synchronization logic to account for Mako/new Cache object’s multithreaded usage of Con-
tainer.

4.38 Release 0.7 (05/18/07)

• WARNING: Cleaned up Cache object based on Mako cache object, this changes the call interface
slightly for creating a Cache object directly. The middleware cache object is unaffected from an end-
user view. This change also avoids duplicate creations of Cache objects.

• Adding database backend and unit tests.

• Added memcached test, fixed memcached namespace arg passing.

• Fixed session and cache tests, still failing syncdict test. Added doctests for Cache and Session mid-
dleware.

• Cleanup of container/cache/container_test

• Namespaces no longer require a context, removed NamespaceContext?

• Logging in container.py uses logging module

• Cleanup of argument passing, use name **kwargs instead of **params for generic kwargs

• Container classes contain a static create_namespace() method, namespaces are accessed from the Con-
tainerContext? via string name + container class alone

4.34. Release 0.7.4 (07/09/07) 21

Beaker Documentation, Release 1.6.1

• Implemented (but not yet tested) clear() method on Cache, locates all Namespaces used thus far and
clears each one based on its keys() collection

• Fixed Cache.clear() method to actually clear the Cache namespace.

• Updated memcached backend to split servers on ‘;’ for multiple memcached backends.

• Merging MyghtyUtils code into Beaker.

4.39 Release 0.6.3 (03/18/2007)

• Added api with customized Session that doesn’t require a Myghty request object, just a dict. Updated
session to use the new version.

• Removing unicode keys as some dbm backends can’t handle unicode keys.

• Adding core files that should’ve been here.

• More stringent checking for existence of a session.

• Avoid recreating the session object when it’s empty.

22 Chapter 4. Changes in Beaker

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

• glossary

5.1 Module Listing

5.1.1 beaker.cache – Cache module

This package contains the “front end” classes and functions for Beaker caching.

Included are the Cache and CacheManager classes, as well as the function decorators
region_decorate(), region_invalidate().

Module Contents

beaker.cache.cache_regions = {}
Dictionary of ‘region’ arguments.

A “region” is a string name that refers to a series of cache configuration arguments. An application
may have multiple “regions” - one which stores things in a memory cache, one which writes data to
files, etc.

The dictionary stores string key names mapped to dictionaries of configuration arguments. Example:

from beaker.cache import cache_regions
cache_regions.update({

’ short_term ’ :{

’ expire ’ : ’ 60 ’ ,

’ type ’ : ’ memory ’
},
’ long_term ’ :{

’ expire ’ : ’ 1800 ’ ,

’ type ’ : ’ dbm ’ ,

’ data_dir ’ : ’ /tmp ’ ,
}

})

23

Beaker Documentation, Release 1.6.1

beaker.cache.cache_region(region, *args)
Decorate a function such that its return result is cached, using a “region” to indicate the cache argu-
ments.

Example:

from beaker.cache import cache_regions, cache_region

configure regions
cache_regions.update({

’ short_term ’ :{

’ expire ’ : ’ 60 ’ ,

’ type ’ : ’ memory ’
}

})

@cache_region(’ short_term ’ , ’ load_things ’)
def load(search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

The decorator can also be used with object methods. The self argument is not part of the cache key.
This is based on the actual string name self being in the first argument position (new in 1.6):

class MyThing(object):
@cache_region(’ short_term ’ , ’ load_things ’)
def load(self, search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

Classmethods work as well - use cls as the name of the class argument, and place the decorator
around the function underneath @classmethod (new in 1.6):

class MyThing(object):
@classmethod
@cache_region(’ short_term ’ , ’ load_things ’)
def load(cls, search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

Parameters

• region – String name of the region corresponding to the desired caching arguments,
established in cache_regions.

• *args – Optional str()-compatible arguments which will uniquely identify the
key used by this decorated function, in addition to the positional arguments passed
to the function itself at call time. This is recommended as it is needed to distinguish
between any two functions or methods that have the same name (regardless of
parent class or not).

Note: The function being decorated must only be called with positional arguments, and the argu-
ments must support being stringified with str(). The concatenation of the str() version of each
argument, combined with that of the *args sent to the decorator, forms the unique cache key.

24 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

Note: When a method on a class is decorated, the self or cls argument in the first position is not
included in the “key” used for caching. New in 1.6.

beaker.cache.region_invalidate(namespace, region, *args)
Invalidate a cache region corresponding to a function decorated with cache_region().

Parameters

• namespace – The namespace of the cache to invalidate. This is typically a reference
to the original function (as returned by the cache_region() decorator), where the
cache_region() decorator applies a “memo” to the function in order to locate
the string name of the namespace.

• region – String name of the region used with the decorator. This can be None in
the usual case that the decorated function itself is passed, not the string name of the
namespace.

• args – Stringifyable arguments that are used to locate the correct key. This consists
of the *args sent to the cache_region() decorator itself, plus the *args sent to
the function itself at runtime.

Example:

from beaker.cache import cache_regions, cache_region, region_invalidate

configure regions
cache_regions.update({

’ short_term ’ :{

’ expire ’ : ’ 60 ’ ,

’ type ’ : ’ memory ’
}

})

@cache_region(’ short_term ’ , ’ load_data ’)
def load(search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

def invalidate_search(search_term, limit, offset):
’’’Invalidate the cached storage for a given search term, limit, offset.’’’

region_invalidate(load, ’ short_term ’ , ’ load_data ’ , search_term, limit, offset)

Note that when a method on a class is decorated, the first argument cls or self is not included in
the cache key. This means you don’t send it to region_invalidate():

class MyThing(object):
@cache_region(’ short_term ’ , ’ some_data ’)
def load(self, search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

def invalidate_search(self, search_term, limit, offset):
’’’Invalidate the cached storage for a given search term, limit, offset.’’’

region_invalidate(self.load, ’ short_term ’ , ’ some_data ’ , search_term, limit, offset)

class beaker.cache.Cache(namespace, type=’memory’, expiretime=None, starttime=None, ex-
pire=None, **nsargs)

Front-end to the containment API implementing a data cache.

5.1. Module Listing 25

Beaker Documentation, Release 1.6.1

Parameters

• namespace – the namespace of this Cache

• type – type of cache to use

• expire – seconds to keep cached data

• expiretime – seconds to keep cached data (legacy support)

• starttime – time when cache was cache was

get(key, **kw)
Retrieve a cached value from the container

clear()
Clear all the values from the namespace

class beaker.cache.CacheManager(**kwargs)
Initialize a CacheManager object with a set of options

Options should be parsed with the parse_cache_config_options() function to ensure only
valid options are used.

region(region, *args)
Decorate a function to cache itself using a cache region

The region decorator requires arguments if there are more than two of the same named function,
in the same module. This is because the namespace used for the functions cache is based on the
functions name and the module.

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

@cache.region(’ short_term ’ , ’ some_data ’)
def load(search_term, limit, offset):

return load_the_data(search_term, limit, offset)

return load(’ rabbits ’ , 20, 0)

Note: The function being decorated must only be called with positional arguments.

region_invalidate(namespace, region, *args)
Invalidate a cache region namespace or decorated function

This function only invalidates cache spaces created with the cache_region decorator.

Parameters

• namespace – Either the namespace of the result to invalidate, or the cached func-
tion

• region – The region the function was cached to. If the function was cached to a
single region then this argument can be None

• args – Arguments that were used to differentiate the cached function as well as
the arguments passed to the decorated function

26 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things(invalidate=False):

@cache.region(’ short_term ’ , ’ some_data ’)
def load(search_term, limit, offset):

return load_the_data(search_term, limit, offset)

If the results should be invalidated first
if invalidate:

cache.region_invalidate(load, None, ’ some_data ’ ,

’ rabbits ’ , 20, 0)

return load(’ rabbits ’ , 20, 0)

cache(*args, **kwargs)
Decorate a function to cache itself with supplied parameters

Parameters

• args – Used to make the key unique for this function, as in region() above.

• kwargs – Parameters to be passed to get_cache(), will override defaults

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

def populate_things():

@cache.cache(’ mycache ’ , expire=15)
def load(search_term, limit, offset):

return load_the_data(search_term, limit, offset)

return load(’ rabbits ’ , 20, 0)

Note: The function being decorated must only be called with positional arguments.

invalidate(func, *args, **kwargs)
Invalidate a cache decorated function

This function only invalidates cache spaces created with the cache decorator.

Parameters

• func – Decorated function to invalidate

• args – Used to make the key unique for this function, as in region() above.

• kwargs – Parameters that were passed for use by get_cache(), note that this is only
required if a type was specified for the function

Example:

Assuming a cache object is available like:
cache = CacheManager(dict_of_config_options)

5.1. Module Listing 27

Beaker Documentation, Release 1.6.1

def populate_things(invalidate=False):

@cache.cache(’ mycache ’ , type= " file " , expire=15)
def load(search_term, limit, offset):

return load_the_data(search_term, limit, offset)

If the results should be invalidated first
if invalidate:

cache.invalidate(load, ’ mycache ’ , ’ rabbits ’ , 20, 0, type= " file ")

return load(’ rabbits ’ , 20, 0)

5.1.2 beaker.container – Container and Namespace classes

Container and Namespace classes

Module Contents

class beaker.container.DBMNamespaceManager(namespace, dbmmodule=None, data_dir=None,
dbm_dir=None, lock_dir=None, di-
gest_filenames=True, **kwargs)

Bases: beaker.container.OpenResourceNamespaceManager

NamespaceManager that uses dbm files for storage.

class beaker.container.FileNamespaceManager(namespace, data_dir=None, file_dir=None,
lock_dir=None, digest_filenames=True,
**kwargs)

Bases: beaker.container.OpenResourceNamespaceManager

NamespaceManager that uses binary files for storage.

Each namespace is implemented as a single file storing a dictionary of key/value pairs, serialized
using the Python pickle module.

class beaker.container.MemoryNamespaceManager(namespace, **kwargs)
Bases: beaker.container.AbstractDictionaryNSManager

NamespaceManager that uses a Python dictionary for storage.

class beaker.container.NamespaceManager(namespace)
Handles dictionary operations and locking for a namespace of values.

NamespaceManager provides a dictionary-like interface, implementing __getitem__(),
__setitem__(), and __contains__(), as well as functions related to lock acquisition.

The implementation for setting and retrieving the namespace data is handled by subclasses.

NamespaceManager may be used alone, or may be accessed by one or more Value objects. Value
objects provide per-key services like expiration times and automatic recreation of values.

Multiple NamespaceManagers created with a particular name will all share access to the same un-
derlying datasource and will attempt to synchronize against a common mutex object. The scope of
this sharing may be within a single process or across multiple processes, depending on the type of
NamespaceManager used.

The NamespaceManager itself is generally threadsafe, except in the case of the DBMNamespaceMan-
ager in conjunction with the gdbm dbm implementation.

28 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

acquire_read_lock()
Establish a read lock.

This operation is called before a key is read. By default the function does nothing.

acquire_write_lock(wait=True, replace=False)
Establish a write lock.

This operation is called before a key is written. A return value of True indicates the lock has
been acquired.

By default the function returns True unconditionally.

‘replace’ is a hint indicating the full contents of the namespace may be safely discarded. Some
backends may implement this (i.e. file backend won’t unpickle the current contents).

do_remove()
Implement removal of the entire contents of this NamespaceManager.

e.g. for a file-based namespace, this would remove all the files.

The front-end to this method is the NamespaceManager.remove() method.

get_creation_lock(key)
Return a locking object that is used to synchronize multiple threads or processes which wish to
generate a new cache value.

This function is typically an instance of FileSynchronizer, ConditionSynchronizer, or
null_synchronizer.

The creation lock is only used when a requested value does not exist, or has been expired, and
is only used by the Value key-management object in conjunction with a “createfunc” value-
creation function.

has_key(key)
Return True if the given key is present in this Namespace.

keys()
Return the list of all keys.

This method may not be supported by all NamespaceManager implementations.

release_read_lock()
Release a read lock.

This operation is called after a key is read. By default the function does nothing.

release_write_lock()
Release a write lock.

This operation is called after a new value is written. By default this function does nothing.

remove()
Remove the entire contents of this NamespaceManager.

e.g. for a file-based namespace, this would remove all the files.

set_value(key, value, expiretime=None)
Sets a value in this NamespaceManager.

This is the same as __setitem__(), but also allows an expiration time to be passed at the same
time.

class beaker.container.OpenResourceNamespaceManager(namespace)
Bases: beaker.container.NamespaceManager

5.1. Module Listing 29

Beaker Documentation, Release 1.6.1

A NamespaceManager where read/write operations require opening/ closing of a resource which is
possibly mutexed.

class beaker.container.Value(key, namespace, createfunc=None, expiretime=None, start-
time=None)

Implements synchronization, expiration, and value-creation logic for a single value stored in a
NamespaceManager.

can_have_value()

clear_value()

createfunc

expire_argument

expiretime

get_value()

has_current_value()

has_value()
return true if the container has a value stored.

This is regardless of it being expired or not.

key

namespace

set_value(value, storedtime=None)

starttime

storedtime

Deprecated Classes

class beaker.container.Container
Implements synchronization and value-creation logic for a ‘value’ stored in a NamespaceManager.

Container and its subclasses are deprecated. The Value class is now used for this purpose.

class beaker.container.ContainerMeta(classname, bases, dict_)
Bases: type

class beaker.container.DBMContainer
Bases: beaker.container.Container

class beaker.container.FileContainer
Bases: beaker.container.Container

class beaker.container.MemoryContainer
Bases: beaker.container.Container

5.1.3 beaker.middleware – Middleware classes

Module Contents

class beaker.middleware.CacheMiddleware(app, config=None, environ_key=’beaker.cache’,
**kwargs)

Initialize the Cache Middleware

30 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

The Cache middleware will make a CacheManager instance available every request under the
environ[’beaker.cache’] key by default. The location in environ can be changed by setting
environ_key.

config dict All settings should be prefixed by ‘cache.’. This method of passing variables is intended
for Paste and other setups that accumulate multiple component settings in a single dictionary. If
config contains no cache. prefixed args, then all of the config options will be used to intialize the
Cache objects.

environ_key Location where the Cache instance will keyed in the WSGI environ

**kwargs All keyword arguments are assumed to be cache settings and will override any settings
found in config

class beaker.middleware.SessionMiddleware(wrap_app, config=None, envi-
ron_key=’beaker.session’, **kwargs)

Initialize the Session Middleware

The Session middleware will make a lazy session instance available every request under the
environ[’beaker.session’] key by default. The location in environ can be changed by setting
environ_key.

config dict All settings should be prefixed by ‘session.’. This method of passing variables is in-
tended for Paste and other setups that accumulate multiple component settings in a single dic-
tionary. If config contains no cache. prefixed args, then all of the config options will be used to
intialize the Cache objects.

environ_key Location where the Session instance will keyed in the WSGI environ

**kwargs All keyword arguments are assumed to be session settings and will override any settings
found in config

5.1.4 beaker.session – Session classes

Module Contents

class beaker.session.CookieSession(request, key=’beaker.session.id’, timeout=None,
cookie_expires=True, cookie_domain=None, en-
crypt_key=None, validate_key=None, secure=False,
httponly=False, **kwargs)

Pure cookie-based session

Options recognized when using cookie-based sessions are slightly more restricted than general ses-
sions.

key The name the cookie should be set to.

timeout How long session data is considered valid. This is used regardless of the cookie being
present or not to determine whether session data is still valid.

encrypt_key The key to use for the session encryption, if not provided the session will not be
encrypted.

validate_key The key used to sign the encrypted session

cookie_domain Domain to use for the cookie.

secure Whether or not the cookie should only be sent over SSL.

httponly Whether or not the cookie should only be accessible by the browser not by JavaScript.

5.1. Module Listing 31

Beaker Documentation, Release 1.6.1

save(accessed_only=False)
Saves the data for this session to persistent storage

expire()
Delete the ‘expires’ attribute on this Session, if any.

delete()
Delete the cookie, and clear the session

invalidate()
Clear the contents and start a new session

class beaker.session.Session(request, id=None, invalidate_corrupt=False, use_cookies=True,
type=None, data_dir=None, key=’beaker.session.id’, timeout=None,
cookie_expires=True, cookie_domain=None, secret=None, se-
cure=False, namespace_class=None, httponly=False, **names-
pace_args)

Session object that uses container package for storage.

key The name the cookie should be set to.

timeout How long session data is considered valid. This is used regardless of the cookie being
present or not to determine whether session data is still valid.

cookie_domain Domain to use for the cookie.

secure Whether or not the cookie should only be sent over SSL.

httponly Whether or not the cookie should only be accessible by the browser not by JavaScript.

save(accessed_only=False)
Saves the data for this session to persistent storage

If accessed_only is True, then only the original data loaded at the beginning of the request will
be saved, with the updated last accessed time.

revert()
Revert the session to its original state from its first access in the request

lock()
Locks this session against other processes/threads. This is automatic when load/save is called.

use with caution and always with a corresponding ‘unlock’ inside a “finally:” block, as a stray
lock typically cannot be unlocked without shutting down the whole application.

unlock()
Unlocks this session against other processes/threads. This is automatic when load/save is
called.

use with caution and always within a “finally:” block, as a stray lock typically cannot be
unlocked without shutting down the whole application.

delete()
Deletes the session from the persistent storage, and sends an expired cookie out

invalidate()
Invalidates this session, creates a new session id, returns to the is_new state

class beaker.session.SessionObject(environ, **params)
Session proxy/lazy creator

This object proxies access to the actual session object, so that in the case that the session hasn’t been
used before, it will be setup. This avoid creating and loading the session from persistent storage
unless its actually used during the request.

32 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

persist()
Persist the session to the storage

If its set to autosave, then the entire session will be saved regardless of if save() has been called.
Otherwise, just the accessed time will be updated if save() was not called, or the session will be
saved if save() was called.

get_by_id(id)
Loads a session given a session ID

accessed()
Returns whether or not the session has been accessed

class beaker.session.SignedCookie(secret, input=None)
Extends python cookie to give digital signature support

5.1.5 beaker.synchronization – Synchronization classes

Synchronization functions.

File- and mutex-based mutual exclusion synchronizers are provided, as well as a name-based mutex which
locks within an application based on a string name.

Module Contents

class beaker.synchronization.ConditionSynchronizer(identifier)
a synchronizer using a Condition.

class beaker.synchronization.FileSynchronizer(identifier, lock_dir)
A synchronizer which locks using flock().

class beaker.synchronization.NameLock(identifier=None, reentrant=False)
a proxy for an RLock object that is stored in a name based registry.

Multiple threads can get a reference to the same RLock based on the name alone, and synchronize
operations related to that name.

class beaker.synchronization.null_synchronizer
A ‘null’ synchronizer, which provides the SynchronizerImpl interface without any locking.

class beaker.synchronization.SynchronizerImpl
Base class for a synchronization object that allows multiple readers, single writers.

5.1.6 beaker.util – Beaker Utilities

Beaker utilities

Module Contents

beaker.util.encoded_path(root, identifiers, extension=’.enc’, depth=3, digest_filenames=True)
Generate a unique file-accessible path from the given list of identifiers starting at the given root direc-
tory.

beaker.util.func_namespace(func)
Generates a unique namespace for a function

5.1. Module Listing 33

Beaker Documentation, Release 1.6.1

class beaker.util.SyncDict
An efficient/threadsafe singleton map algorithm, a.k.a. “get a value based on this key, and create if
not found or not valid” paradigm:

exists && isvalid ? get : create

Designed to work with weakref dictionaries to expect items to asynchronously disappear from the
dictionary.

Use python 2.3.3 or greater ! a major bug was just fixed in Nov. 2003 that was driving me nuts with
garbage collection/weakrefs in this section.

class beaker.util.ThreadLocal
stores a value on a per-thread basis

beaker.util.verify_directory(dir)
verifies and creates a directory. tries to ignore collisions with other threads and processes.

beaker.util.parse_cache_config_options(config, include_defaults=True)
Parse configuration options and validate for use with the CacheManager

5.1.7 beaker.ext.database – Database Container and NameSpace Manager
classes

Module Contents

class beaker.ext.database.DatabaseContainer

class beaker.ext.database.DatabaseNamespaceManager(namespace, url=None,
sa_opts=None, optimistic=False,
table_name=’beaker_cache’,
data_dir=None, lock_dir=None,
**params)

Creates a database namespace manager

url SQLAlchemy compliant db url

sa_opts A dictionary of SQLAlchemy keyword options to initialize the engine with.

optimistic Use optimistic session locking, note that this will result in an additional select when
updating a cache value to compare version numbers.

table_name The table name to use in the database for the cache.

5.1.8 beaker.ext.google – Google Container and NameSpace Manager classes

Module Contents

class beaker.ext.google.GoogleContainer

class beaker.ext.google.GoogleNamespaceManager(namespace, table_name=’beaker_cache’,
**params)

Creates a datastore namespace manager

34 Chapter 5. Indices and tables

Beaker Documentation, Release 1.6.1

5.1.9 beaker.ext.memcached – Memcached Container and NameSpace Manager
classes

Module Contents

class beaker.ext.memcached.MemcachedContainer
Bases: beaker.container.Container

Container class which invokes MemcacheNamespaceManager.

class beaker.ext.memcached.MemcachedNamespaceManager(namespace, url, mem-
cache_module=’auto’,
data_dir=None, lock_dir=None,
**kw)

Bases: beaker.container.NamespaceManager

Provides the NamespaceManager API over a memcache client library.

class beaker.ext.memcached.PyLibMCNamespaceManager(*arg, **kw)
Bases: beaker.ext.memcached.MemcachedNamespaceManager

Provide thread-local support for pylibmc.

5.1.10 beaker.ext.sqla – SqlAlchemy Container and NameSpace Manager
classes

Module Contents

beaker.ext.sqla.make_cache_table(metadata, table_name=’beaker_cache’)
Return a Table object suitable for storing cached values for the namespace manager. Do not create
the table.

class beaker.ext.sqla.SqlaContainer

class beaker.ext.sqla.SqlaNamespaceManager(namespace, bind, table, data_dir=None,
lock_dir=None, **kwargs)

Create a namespace manager for use with a database table via SQLAlchemy.

bind SQLAlchemy Engine or Connection object

table SQLAlchemy Table object in which to store namespace data. This should usually be some-
thing created by make_cache_table.

5.1.11 beaker.crypto.pbkdf2 – PKCS#5 v2.0 Password-Based Key Derivation
classes

Module Contents

beaker.crypto.pbkdf2.crypt(word, salt=None, iterations=None)
PBKDF2-based unix crypt(3) replacement.

The number of iterations specified in the salt overrides the ‘iterations’ parameter.

The effective hash length is 192 bits.

5.1. Module Listing 35

Beaker Documentation, Release 1.6.1

class beaker.crypto.pbkdf2.PBKDF2(passphrase, salt, iterations=1000, digestmodule=<module
‘Crypto.Hash.SHA’ from ‘/usr/lib/python2.7/dist-
packages/Crypto/Hash/SHA.pyc’>, macmodule=<module
‘Crypto.Hash.HMAC’ from ‘/usr/lib/python2.7/dist-
packages/Crypto/Hash/HMAC.pyc’>)

PBKDF2.py : PKCS#5 v2.0 Password-Based Key Derivation

This implementation takes a passphrase and a salt (and optionally an iteration count, a digest module,
and a MAC module) and provides a file-like object from which an arbitrarily-sized key can be read.

If the passphrase and/or salt are unicode objects, they are encoded as UTF-8 before they are processed.

The idea behind PBKDF2 is to derive a cryptographic key from a passphrase and a salt.

PBKDF2 may also be used as a strong salted password hash. The ‘crypt’ function is provided for that
purpose.

Remember: Keys generated using PBKDF2 are only as strong as the passphrases they are derived
from.

close()
Close the stream.

hexread(octets)
Read the specified number of octets. Return them as hexadecimal.

Note that len(obj.hexread(n)) == 2*n.

read(bytes)
Read the specified number of key bytes.

36 Chapter 5. Indices and tables

